Dr Peter Adams

Dr Peter Adams


I am an Associate Professor (a lecturer) in the School of Physics and Astronomy and a part of the Molecular and Nanoscale Physics research group (2015-current). This followed a Postdoctoral Research Scholar position at Los Alamos National Laboratory, USA (2012-2014), and PhD (2007-2011) and BSc (2004-2007) at University of Sheffield, UK.

PhD opportunities with my group available for applications now! These are for a start date of approx Oct 2021, with various funding opportunities. You are welcome to contact me directly if you are interested:

High-speed Atomic Force Microscopy and Fluorescence Microscopy project: "Seeing photosynthesis at the nanoscale: mapping physical properties of light-harvesting biomembranes by high-resolution microscopy and spectroscopy". Additional supervision will be provided by AFM experts Dr George Heath and Prof Steve Evans.

Computer simulations and Fluorescence Microscopy project: "Understanding the dynamics of the plant protein Light Harvesting Complex II using molecular dynamics simulations and fluorescence experiments". Additional supervision will be provided by MD simulation expert Dr Antreas Kalli.

Electron Microscopy and Fluorescence Spectroscopy project: "Understanding the nanoscale dynamics of critical plant membrane proteins involved in photosynthesis using cutting-edge microscopy techniques". Additional supervision will be provided by EM expert Dr Ste Muench.


Research interests

My research investigates membrane protein and lipid assembly, with a focus on the specialized “light-harvesting” membranes which are involved in photosynthesis. We wish to understand, mimic and control the organization of membranes, inspired by the “light-harvesting” membranes found within plants (chloroplasts) and photosynthetic bacteria. My group takes a multi-disciplinary approach combining aspects of surface chemistry, nano/micro fabrication, protein biochemistry, spectroscopy and various microscopies.

Biophysics of natural “light-harvesting” membranes of photosynthesis:

A major goal is to understand the role of plant Light-Harvesting Complex II (LHCII) the process of photoprotection. Photosynthetic “light-harvesting” membranes contain organized domains of membrane proteins which work together as a coordinated network for energy trapping. The plant protein LHCII acts as the major antenna protein for plants, and is possibly the most abundant membrane protein in the world. It has a critical role in safely dissipating energy when light intensity is too high (e.g., on a cold, sunny day). We are studying the molecular mechanism of this photoprotective process (called “nonphotochemical quenching”) by performing experiments and collaborating with theoreticians. We also have a longstanding interest in the LH membranes from purple bacteria and “chlorosome” antennae of green bacteria.

Model biomembranes, artificial photosynthesis and nanotechnology:

Another goal is the development of novel nanocomposites for energy transfer. Purified LH proteins, natural lipids, synthetic lipids, quantum dots, polymers and other materials are used as building blocks to generate model protein/lipid systems. Using lipid bilayers as a platform, we have shown that we can interface Light Harvesting proteins with a range of different nanomaterials, to study their function and to change (possibly “enhance”) the natural proteins. Relatedly, we are interested in model lipid membranes as a platform to study lipid biophysics and protein function. By mimicking the natural stacked membrane but attaching them to glass or mica surfaces, these model membranes are biologically relevant and also amenable to characterization by advanced microscopy. 

Advanced microscopy and spectroscopy of various biophysical samples:

We are interested in using Atomic Force Microscopy (AFM) to understand natural and synthetic membranes and protein arrangements in collaborations with others. AFM has excellent signal-to-noise and can image soft biological samples to sub-nanometre spatial resolution. For example we can observe the arrangement of hundreds of membrane proteins without the need for averaging. We are also interested in time-resolved fluorescence spectroscopy and fluorescence microscopy (TCSPC and FLIM) to explore the photophysical properties of any interesting biological or nanophotonic materials.


  • PhD, Biochemistry and Microbiology
  • BSc First Class, Biochemistry and Microbiology

Professional memberships

  • Institute of Physics (IOP)
  • International Society of Photosynthesis Research (ISPR)
  • British Biophysical Society
  • Biophysical Society (USA)

Research groups and institutes

  • Molecular and Nanoscale Physics
<h4>Postgraduate research opportunities</h4> <p>We welcome enquiries from motivated and qualified applicants from all around the world who are interested in PhD study. Our <a href="https://phd.leeds.ac.uk">research opportunities</a> allow you to search for projects and scholarships.</p>
    <li><a href="//phd.leeds.ac.uk/project/433-seeing-photosynthesis-at-the-nanoscale:-mapping-physical-properties-of-light-harvesting-biomembranes-by-high-resolution-microscopy-and-spectroscopy">Seeing photosynthesis at the nanoscale: mapping physical properties of light-harvesting biomembranes by high-resolution microscopy and spectroscopy</a></li> <li><a href="//phd.leeds.ac.uk/project/848-understanding-the-dynamics-of-the-plant-protein-light-harvesting-complex-ii-using-molecular-dynamics-simulations-and-fluorescence-experiments">Understanding the dynamics of the plant protein Light Harvesting Complex II using molecular dynamics simulations and fluorescence experiments</a></li>