(Full time) 2024 start
Chemistry with a Year in Industry MChem, BSc
Overview
Chemistry is a central science that’s at the core of everything we can see, smell, taste and touch around us. From energy to the environment, groundbreaking medicine to cleaning products, chemistry is integral to all aspects of our life, which puts chemical scientists at the forefront of delivering invaluable solutions to global challenges such as climate change, sustainability and health.
The diverse nature of this field — and the widely transferable skills like teamwork and data analysis you’ll develop along the way — means chemistry graduates will always be highly sought after across a wide range of industries worldwide.
Studying this chemistry degree at Leeds will teach you the fundamental concepts of the field alongside a variety of optional modules available so you can tailor your degree to what really interests you the most. You’ll also be taught by expert academics, with the unique opportunity to get involved in real-world research happening in the University.
As part of this programme, you’ll spend your third year working in a paid industrial placement within a chemistry-based setting. Here, you’ll gain a unique insight into working in this sector whilst building industry contacts and developing the experience you’ll need to stand out to employers when you graduate.
Practical work features heavily in this course. As such, you’ll have access to a range of facilities right here on campus including specialist teaching laboratories and research facilities with the latest equipment for synthetic, physical and analytical chemistry to ensure you have the best grounding to head out into your professional career.
Why study at Leeds:
- This course is accredited by the Royal Society of Chemistry (RSC).
- Our School’s globally-renowned research feeds directly into your course, shaping what you learn with the latest thinking in areas like sustainable and digital chemistry, materials chemistry and atmospheric chemistry to drug design.
- Experience expert teaching delivered by a programme team made up of academics and researchers who specialise in a variety of chemistry disciplines.
- Access specialist facilities throughout your degree, including computer clusters and teaching laboratories that give you an industry-standard environment to perform experiments and conduct project work.
- Enhance your career prospects and give your CV that competitive edge before you graduate with a paid industrial work placement in third year. Our close industry links have given previous students the chance to work at — and build professional relationships with — organisations such as GlaxoSmithKline, Unilever and AkzoNobel.
- Contribute to the community by undertaking community projects or a teaching placement in a local school.
- Our highly flexible chemistry programmes enable you to transfer to other chemistry courses at the end of your first year.
- Make the most of your time at Leeds by joining our student society ChemSoc where you can meet more of your peers, enjoy social events, join the football or netball team and attend careers events.
Join our online taster courses
Our collection of five short online courses will help you discover the extraordinary world of everyday chemistry. Join today on Futurelearn.
Benefits of an integrated Masters
Learn more about what an integrated Masters is and how it can benefit your studies and boost your career.
Accreditation
Accreditation is the assurance that a university course meets the quality standards established by the profession for which it prepares its students.
This course is accredited by the Royal Society of Chemistry (RSC) and provides access to qualified membership of the Royal Society of Chemistry.
This integrated Masters degree (MChem, BSc) is accredited as fully meeting the academic requirement for the award of Chartered Chemist (CChem).
Course content
On this course, you’ll discover how chemistry shapes the world around us, with a wide range of topics to explore. From quantum mechanics to planetary atmospheres, making organic chemicals to developing medicinal drugs — the scope is huge, giving you the chance to really hone in your interests.
As well as your studies, this programme offers you the chance to head out into the working world and gain an invaluable year of experience, skills and knowledge working in industry.
Each academic year, you'll take a total of 120 credits.
Course Structure
The list shown below represents typical modules/components studied and may change from time to time. Read more in our terms and conditions.
Most courses consist of compulsory and optional modules. There may be some optional modules omitted below. This is because they are currently being refreshed to make sure students have the best possible experience. Before you enter each year, full details of all modules for that year will be provided.
Year 1
During your first year, you’ll explore the fundamental principles that underpin chemistry. You’ll also begin to develop skills as an experimental chemist in our teaching labs, learning to
- safely handle reagents/solvents and manipulate laboratory apparatus
- synthesize inorganic and organic molecules of straightforward structural complexity
- determine structure using spectroscopic data such as infrared (IR) and nuclear magnetic resonance (NMR)
- record data and physical measurements and comment on their precision and accuracy
- use PC-based spreadsheets, graphics and word-processing packages to manipulate and plot data and to prepare reports.
At the end of year 1, our flexible degree structure offers you the opportunity to transfer onto our degree courses in medicinal chemistry, the international variant or non-placement chemistry.
Compulsory modules
Introduction to Modern Chemistry – 20 credits
This module will provide a concise introduction to modern chemistry with an initial focus on a qualitative appreciation of electronic structure and how it determines the chemical and structural properties of matter. You’ll also get an introduction to chemical kinetics and thermodynamics, organic structures and mechanisms and the chemistry of transition metal-ligand complexes.
Chemistry and Chemists for a Sustainable Future – 20 credits
Explore current chemical research in areas like sustainability and the ethical issues surrounding science. You’ll develop skills in identifying and reading scientific literature, presenting science in different formats and for different audiences alongside transferrable skills like coding and self-reflection.
Introduction to Practical Chemistry and Research Skills – 40 credits
Develop your practical skills, conducting a range of experiments in our teaching labs. Through a series of lectures and workshops, you’ll learn how to use a range of equipment and build up your experience in presenting scientific reports, data analysis and appropriate IT.
Chemistry in Action: Atoms, Molecules, Matter – 10 credits
This module will build upon the ‘Introduction to Modern Chemistry’ module, exploring areas in structural, physical and inorganic chemistry. On completion of this module, you’ll have an understanding of key sub-disciplines of chemistry including spectroscopy and electronic energy levels, IR and structure determination, periodicity and main-group chemistry, states of matter and phase behaviour and phase equilibria and chromatography.
You’ll also be able to appreciate how these ideas have relevance to modern society through selected illustrative examples and be able to apply these concepts to a range of problems in a linked programme of workshops and tutorials.
Fundamental Organic Chemistry for Biology and Synthesis – 10 credits
Build a broad foundation of knowledge in organic chemistry. You’ll cover the mechanistic basis and application of key organic reactions including nucleophilic and electrophilic substitution and addition reactions, eliminations, oxidation and reduction and key functional group interconversions.
Chemistry of the Material World – 10 credits
Explore both physical and inorganic chemistry, including analysis and understanding of the kinetics and thermodynamics of chemical reactions, molecular energy levels and their origin and transition metal chemistry for materials.
Optional modules
You’ll choose either the optional module offered below or a discovery module. The optional module offered is only for students who do not have a B or above in A level mathematics (or the A level equivalent).
Discovery modules give you the chance to apply your scientific thinking in real-world scenarios whilst expanding out into different areas, broadening your knowledge and giving you that competitive edge in the jobs market.
Maths for Scientists – 10 credits
Mathematical knowledge and skills are essential for the successful training of scientists and important for the professional life of scientists. This module will be taken by science students who do not have grade B or above in A level mathematics (or equivalent) to raise the mathematical competence of those students to that base level.
Year 2
In your second year you'll build upon these foundations and cover a wide range of different aspects of chemistry.
All of the lecture-based modules are backed up by extensive practical sessions in the laboratory, allowing you to perform experiments that complement the material taught to you in the lectures and develop experimental skills. In addition, workshops and tutorial groups or seminar groups are used to support the teaching, so you get regular feedback from the academic staff helping you solve any problems that you might have with a particular topic.
Compulsory modules
Organic Chemistry: Structure, Reactions and the Science of Life – 20 credits
Examine how the shapes of organic molecules impact their physical properties and reactivity. You'll be introduced to new classes of reactions such as pericyclic reactions and enols/enolates as reactive carbon-centred nucleophiles. You’ll also cover heterocyclic chemistry principles which play a role in biological systems like DNA, enzymes and coenzymes.
Molecules, Energy, Quanta and Change – 20 credits
The module has two components. One is concerned with chemical kinetics and thermodynamics, illustrated using societally important applications, for example atmospheric chemistry and combustion.
The other component covers quantum mechanics and molecular bonding. Starting from the postulates of quantum mechanics and building from simple models to atoms, to molecules, you’ll learn how and why chemical bonding occurs.
The module builds on concepts of energy storage, states of matter and chemical change.
Practical, Professional and Research Skills for Chemists – 40 credits
Throughout this module, you’ll develop skills to: (i) undertake a selection of experiments in the synthetic and physical chemistry laboratories that link to the theory you’re learning and develop good laboratory technique (ii) build transferrable skills including data analysis and coding alongside an understanding of intellectual property, enterprise, sustainability and ethical issues.
Chemistry of Materials: What They Are and How We Know – 10 credits
Gain an understanding of inorganic solid-state structures and materials and how they are synthesised, characterised and understood. Important characterisation and structure determination techniques will be addressed, with a focus on illustrative examples that highlight structure-property relationships and the importance and diversity of materials applications to be found in everyday life.
Organometallics: From Bonding to Catalysis – 10 credits
Build upon organic and inorganic chemistry learned in year 1, with focus on the structure and reactivity of organo-main group molecules and organo-transition metal complexes, and on the increasingly important application of these species as reagents and/or catalysts in synthetic organic chemistry.
Molecular Signatures: Spectroscopy and Chromatography – 10 credits
Develop the skills to interpret NMR and mass spectra to determine structures of small molecules, building on skills developed in year 1. The module will also provide a theoretical basis for quantitative and qualitative analytical chemistry, in particular analysis by chromatographic methods such as GC and HPLC.
Specialisms in Chemical Science – 10 credits
Gain a deeper understanding of some specialised areas within chemistry, including for example, polymer chemistry, molecular symmetry and spectroscopy and solution equilibria.
Year 3
You'll spend the third year of your degree undertaking a paid 12-month industrial placement. To progress onto this third-year placement, you’ll need to maintain a 2:1 level of performance in years 1 and 2. If you do not meet this threshold, you may transfer to one of our other chemistry courses.
Compulsory modules
Distance Learning for Year in Industry – 30 credits
You’ll complete distance learning coursework which you’ll hand in to the School for marking. This module is a chance for you to develop your independent study skills, whilst building an understanding in specialised topics which you’ll choose from a range of areas. Topics offered could include chemical bonding, molecular self-organization, chemical kinetics, organic synthesis, medicinal chemistry, molecular symmetry, organometallic chemistry, solid-state inorganic chemistry, analytical chemistry and atmospheric chemistry.
Industrial Placement for Integrated Masters Students – 90 credits
Gain an insight into the relevance and application of chemistry in industry. You’ll develop a wide range of new skills and experience applying your chemical knowledge in a work-based environment.
You’ll build transferable skills such as identifying objectives, negotiating the strategy needed to achieve such objectives, written and oral communication and working within a team in an industrial laboratory environment.
Year 4
In your final year, you’ll have a range of research-led topics to study at a more advanced level, as well as undertaking a research project, which gives you the opportunity to follow your interests and investigate an area at the cutting edge of chemistry.
You'll undertake a research project, which gives you the opportunity to follow your interests and investigate a topic at the cutting-edge of chemistry. You’ll work collaboratively with your supervisors throughout the project, who’ll be experts in your particular research area.
Recent projects include:
- Applications of New Machine Learning Algorithms for Synthetic chemistry
- Green Peptide Synthesis for Pharmaceutical Manufacturing
- Designing metal oxide based chemical gardens for waste water treatment
- Chemistry at the Extremes: Reaction kinetics at interstellar temperatures
- Tackling air pollution via probing the atmosphere with lasers
- Re-engineering bacterial toxins for drug delivery
- Biosensors for point-of-care detection of bowel diseases
- The development of interactive web based visualisation tools for chemical education
- Developing an online drug discovery project for use in the undergraduate laboratory course
- Controlling crystallization in organic semiconductor films for light emitting diodes
- Graphene-Enhanced Nano-Clay Materials for Fuel Purification Applications
Compulsory modules
Integrated Masters Project – 60 credits
In this extended research project, you’ll bring together many of the concepts and techniques learned in the previous years of your programme. You’ll select a project to match your interests, which may be laboratory-based, computational or pedagogic. You’ll be embedded in a research group, working with your academic supervisor, graduate students and postdoctoral researchers. If your project is lab-based, you’ll have access to research facilities in the School of Chemistry and elsewhere in the University. You’ll perform a review of the scientific literature in a particular area of research and acquire, develop and apply advanced research and evaluation skills.
Watch now
Undergraduate research project - Rosa Altarelli
Advanced Topics in Chemistry – 60 credits
This module will broaden your understanding of core areas of advanced chemistry, giving you the knowledge to address unseen, problem-led questions in these areas. Topics change to reflect developing research areas. You’ll handle primary literature and critically evaluate the information, preparing you for your future career in either academia or industry.
Learning and teaching
As a chemistry student at Leeds, we ensure that you benefit from a wide range of teaching methods, including lectures, workshops, group tutorials and practical lab work.
Laboratory classes and project work allow you to gain first-hand experience investigating and applying material from your lectures and tutorials to real-life work situations. There’s a strong emphasis on developing chemistry-specific practical and investigative skills in both teaching laboratories 1-1 ½ days per week on average. Together, they will equip you with in-depth knowledge, key practical skills and transferable skills that will help you secure a graduate job. Our close links with industry also mean that you have direct contact with industry and potential employers from an early stage in your course.
You’ll be assigned a personal tutor to guide you through your studies, and you'll receive support from fellow students through our peer mentoring scheme. Peer mentors are students who are on your course, but are in Years two, three or four. They’ll help you when you arrive at University and throughout your first year. You’ll meet your peer mentors during your first week for a social activity.
Specialist facilities
To support your practical work, you’ll have an extensive range of specialist facilities accessible throughout your degree. The Joseph Priestley teaching laboratory, with space for 110 students, gives you the opportunity to perform synthetic and analytical chemistry experiments in an industry standard environment, and reflects the research-based approach to learning and teaching within the School of Chemistry. You’ll use techniques such as IR (infra-red), NMR (nuclear magnetic resonance), and UV-vis (ultraviolet-visible) spectroscopy.
The George Porter teaching laboratory is equipped with modern research-grade equipment for physical and instrumental analytical experiments, along with a computer cluster where you can process your data under expert supervision.
Our research facilities, which you may benefit from during your project work, include the latest equipment for synthetic, physical and analytical chemistry, 500 and 600 MHz NMR machines, cutting-edge Mass Spectrometry (MS) facilities, a CCD-based X-ray diffractometer, scanning electron microscope and a purification laboratory.
You can also make extensive use of digital technology throughout the course; you’ll be taught in person how to use the latest software for modelling and understanding chemistry, solving chemical problems and analysing experimental data – acquiring digital skills applicable in many potential areas of employment.
Taster lectures
Watch our taster lectures to get a flavour of what it’s like to study at Leeds:
- Transition metal chemistry: controlling nanosized metallo-cages
- How do Reactions Behave in Very Cold Environments? A Journey from Earth to Deep Space
On this course, you’ll be taught by our expert academics, from lecturers through to professors. You may also be taught by industry professionals with years of experience, as well as trained postgraduate researchers, connecting you to some of the brightest minds on campus.
Assessment
The types of assessment used for each module aim to measure the learning outcomes we want you to achieve. Although formal end-of-semester examinations are predominant, often accounting for 80% or more of the formal assessment of lecture-based modules, many modules include a significant coursework element. You are also continuously assessed through practical work.
There’s a significant laboratory component to our chemistry degrees which equates to 1-1 ½ days per week. You'll complete either a short proforma summary or a longer ‘lab report’ for each experiment. These proformas and reports are the basis of a continuous assessment method with regular deadlines throughout each semester. The laboratory assessment accounts for about 20% of the overall assessment in years 1 and 2.
Your research project normally accounts for 50% of the assessment in your final year.
Entry requirements, fees and applying
Entry requirements
A-level: AAB including Chemistry
Where an A-Level science subject is taken, we require a pass in the practical science element, alongside the achievement of the A-Level at the stated grade.
Excludes A-Level General Studies or Critical Thinking.
Extended Project Qualification (EPQ) and International Project Qualification (IPQ): We recognise the value of these qualifications and the effort and enthusiasm that applicants put into them, and where an applicant offers an A in the EPQ or IPQ we may make an offer of ABB at A-Level.
GCSE: English Language grade C (4), or an equivalent English language qualification, and Mathematics grade B (6). We will accept Level 2 Functional Skills English in lieu of GCSE English.
-
Access to HE Diploma
Pass 60 credits overall with 45 credits at Level 3, 30 credits with Distinction and the remaining 15 credits with Merit or above. Must contain a significant number of Chemistry and Mathematics modules.
-
BTEC
DDD with a significant number of Chemical and Scientific Modules
-
Cambridge Pre-U
D2 M2 M2 in 3 principal subjects including Chemistry
-
International Baccalaureate
16 at Higher Level including 6 in Higher Level Chemistry and Mathematics
-
Irish Leaving Certificate (higher Level)
H2 H2 H2 H2 H3 H3 including Higher Level Chemistry
-
Scottish Highers / Advanced Highers
Suitable combinations of Scottish Higher and Advanced Highers are acceptable, though Chemistry must be presented at Advanced Higher level.Typically A at Advanced Higher Level and AABBB at Higher Level
Read more about UK and Republic of Ireland accepted qualifications or contact the Schools Undergraduate Admissions Team.
Alternative entry
We’re committed to identifying the best possible applicants, regardless of personal circumstances or background.
Access to Leeds is a contextual admissions scheme which accepts applications from individuals who might be from low income households, in the first generation of their immediate family to apply to higher education, or have had their studies disrupted.
Find out more about Access to Leeds and contextual admissions.
Typical Access to Leeds A Level offer: BBB including Chemistry and pass Access to Leeds. For alternative qualification offers please contact the admissions team.
Foundation years
If you do not have the formal qualifications for immediate entry to one of our degrees, you may be able to progress through a foundation year.
We offer a Studies in Science with Foundation Year BSc for students without science and mathematics qualifications.
You could also study our Interdisciplinary Science with Foundation Year BSc which is for applicants whose background is less represented at university.
On successful completion of your foundation year, you will be able to progress onto your chosen course.
International Foundation Year
International students who do not meet the academic requirements for undergraduate study may be able to study the University of Leeds International Foundation Year. This gives you the opportunity to study on campus, be taught by University of Leeds academics and progress onto a wide range of Leeds undergraduate courses. Find out more about International Foundation Year programmes.
English language requirements
IELTS 6.0 overall, with no less than 5.5 in any one component. For other English qualifications, read English language equivalent qualifications.
Improve your English
If you're an international student and you don't meet the English language requirements for this programme, you may be able to study our undergraduate pre-sessional English course, to help improve your English language level.
How to apply
Apply to this course through UCAS. Check the deadline for applications on the UCAS website.
We may consider applications submitted after the deadline. Availability of courses in UCAS Extra will be detailed on UCAS at the appropriate stage in the cycle.
Admissions guidance
Read our admissions guidance about applying and writing your personal statement.
What happens after you’ve applied
You can keep up to date with the progress of your application through UCAS.
UCAS will notify you when we make a decision on your application. If you receive an offer, you can inform us of your decision to accept or decline your place through UCAS.
How long will it take to receive a decision
We typically receive a high number of applications to our courses. For applications submitted by the January UCAS deadline, UCAS asks universities to make decisions by mid-May at the latest.
Offer holder events
If you receive an offer from us, you’ll be invited to an offer holder event. This event is more in-depth than an open day. It gives you the chance to learn more about your course and get your questions answered by academic staff and students. Plus, you can explore our campus, facilities and accommodation.
International applicants
International students apply through UCAS in the same way as UK students.
We recommend that international students apply as early as possible to ensure that they have time to apply for their visa.
Read about visas, immigration and other information here.
If you’re unsure about the application process, contact the admissions team for help.
Admissions policy
University of Leeds Admissions Policy 2025
Fees
UK: £9,250 (per year)
International: £30,250 (per year)
Tuition fees for UK undergraduate students starting in 2024/25
Tuition fees for UK full-time undergraduate students are set by the UK Government and will be £9,250 for students starting in 2024/25.
The fee may increase in future years of your course in line with inflation only, as a consequence of future changes in Government legislation and as permitted by law.
Tuition fees for UK undergraduate students starting in 2025/26
Tuition fees for UK full-time undergraduate students starting in 2025/26 have not yet been confirmed by the UK government. When the fee is available we will update individual course pages.
Tuition fees for international undergraduate students starting in 2024/25 and 2025/26
Tuition fees for international students for 2024/25 are available on individual course pages. Fees for students starting in 2025/26 will be available from September 2024.
Tuition fees for a study abroad or work placement year
If you take a study abroad or work placement year, you’ll pay a reduced tuition fee during this period. For more information, see Study abroad and work placement tuition fees and loans.
Read more about paying fees and charges.
The School of Chemistry will provide you with personal protective equipment and laboratory notebooks you’ll need to undertake laboratory work. You’ll also have access to a vast supply of books, academic journals and periodicals from the university libraries however you may wish to purchase some books that are recommended on the course.
This course requires work using a range of relevant software which is provided by the university. We also use a blended learning model where you’ll need to access course materials and video conferences using a computer or mobile device (e.g. laptop, tablet, smartphone).
You’ll have access to the extensive IT facilities on campus including 24/7 computer clusters with everything you need to complete your work however you may wish to purchase your own computer.
There may be additional costs related to your course or programme of study, or related to being a student at the University of Leeds. Read more on our living costs and budgeting page.
Financial support
If you have the talent and drive, we want you to be able to study with us, whatever your financial circumstances. There is help for students in the form of loans and non-repayable grants from the University and from the government. Find out more in our Undergraduate funding overview.
Career opportunities
The employment opportunities available to you as a chemistry graduate are extensive across numerous industries, with the potential to take you all over the world.
Plus, University of Leeds students are among the top 5 most targeted by top employers according to The Graduate Market 2024, High Fliers Research, meaning our graduates are highly sought after by some of the most reputable companies in the field.
Qualifying with a degree in chemistry from Leeds will set you up with the core foundations you need to pursue an exciting career in a wide range of sectors, including:
- Energy
- Pharmaceuticals
- Finance
- Environment
- Food and drink
- Engineering and manufacturing
- Technology
- Education
- Healthcare
- Scientific research and development
- Legal
- Data analytics
The breadth of knowledge and experience, along with the teamwork, problem-solving, research, communication and IT skills taught on the course are widely transferable and desirable to a whole host of employers.
Here’s an insight into the job roles some of our chemistry graduates have obtained:
- European Marketing Program Manager, Agilent Technologies
- Ice Core Analytical Scientist, British Antarctic Survey
- Head of International Procurement, Britvic plc
- Teacher of Chemistry, Clitheroe Royal Grammar School
- Analytical Chemist, Covance
- Finance Director, GlaxoSmithKline
- Accountant, Grant Thornton UK LLP
- Principal Scientist, Johnson Matthey
- Senior Editor, Nature Publishing Group
- Technology Consultant, PwC
- Fuels Scientist, Shell Global Solutions
- Clinical Research Assistant, St James Hospital
- Project Leader, Tata Steel Europe
- Lecturer, University of Birmingham
- Reader in Inorganic Chemistry, University of Manchester
Read profiles of our alumni to find out more about where some of our graduates are working.
Careers support
At Leeds, we help you to prepare for your future from day one. The School of Chemistry benefits from an External Employment and Education Advisory Board, including employers from the different sectors who recruit our graduates, who help to develop the curriculum and engage with students via talks and presentations.
Our Leeds for Life initiative is designed to help you develop and demonstrate the skills and experience you need for when you graduate. We will help you to access opportunities across the University and record your key achievements so you are able to articulate them clearly and confidently.
You'll be supported throughout your studies by our dedicated Employability team, who will provide you with specialist support and advice to help you find relevant work experience, internships and industrial placements, as well as graduate positions. You’ll benefit from timetabled employability sessions, support during internships and placements, and presentations and workshops delivered by employers.
You'll also have full access to the University’s Careers Centre, which is one of the largest in the country.
Study abroad and work placements
Study abroad
The study abroad programme is not an available option for this course. However, our Chemistry MChem, BSc degree has this option.
Work placements
A placement year is a great way to help you decide on a career path when you graduate. You’ll develop your skills and gain a real insight into working life in a particular company or sector. It will also help you to stand out in a competitive graduate jobs market and improve your chances of securing the career you want.
Benefits of a work placement year:
- This placement is salaried
- Build industry contacts within your chosen field
- Our close industry links mean you’ll be in direct contact with potential employers
- Advance your experience and skills by putting the course teachings into practice
- Gain invaluable insight into working as a professional in this industry
- Improve your employability
As this year replaces your third year of study, you'll be required to complete 30 credits of distance learning coursework. You'll complete the final year of your MChem degree at Leeds.
You'll be able to choose from a range of pharmaceutical, energy, fine chemical, colour, polymer and other chemistry-related industries in which to work.
Finding a work placement is competitive, but with the help and support of our dedicated Employability team, you can find the right placement to suit you and your future career goals.
During your industrial placement, you'll have an industrial supervisor from within the company, plus an academic supervisor who will keep in touch throughout your placement.
Here are some examples of placements our students have recently completed:
- Analytical Chemistry Industrial Placement, GlaxoSmithKline
- 12-month Industrial Placement, AkzoNobel
- Emission Technology Placement, Johnson Matthey
- Strepsils Analytical Assistant, Reckitt Benckiser
- Student Placement, Unilever
- Junior Analyst, Jarmany
Find out more about Industrial placements.